OpenWBEM Getting Started Guide
Author: Dan Nuffer
Last update: 12/09/04

Table of Contents

OpenWBEM Getting Started GUIdE.........ccocuuiiriiiieriiiiiiiieeeiieeiee et 1
1. OpenWBEM OVErview & CONCEPLS.ccecviiiriiieriiieeiiieeiteeeriieeesiteesireesireesneeesneeesneeess 3
GBINESIS. 1ot euutieeiiieeitte et te ettt e ettt e ettt e st e e st b e e s atte e s st e e e abee e at e e easbeeeabbeeennbeeenbaeeenbbebeeaeeeeeaaan 3
OVETVIBW ..ttt ettt ettt ettt e ettt e ettt e ettt e st b e e st b e e sabeeesabeeenabeeeabeesaseesbbeesbbeaeeeesanann 3
FEATUTES. ...ttt ettt e st s e et e e s et aaeeeeens 3

2. INSTAITATION. ...eeiiiie ettt ettt e et e st e st e e et e e st e e sabeeenabeeenreas 3
Pre-ReEQUISILES.eeiiiieeiiieeiie ettt ettt e e e e e e e et aeeeeeees 3
Optional Feature Pre-ReqUiSItes.......ccuiiiiiiiiiiiiiiiiiiiieceiecree et e e 3
The INStAllAtiON.eeiiiieiiie ettt e et e et e e e eeeanee s 4

3. CONTIGUIALION. 1. .tieeiiieeeiieeeite ettt ee ettt e et e et e st e e s bt e e sabeeesabeeesbeeenaseesnsnaneaeaesenanns 4
Configuring aUtheNtICAION.cc.ueiiiiiiiiieeiee ettt e e beessabeeesareeeans 5
PAM ..ottt ettt ettt et s 5
PAM Command LiNe...........cooruiiriiiiiiiieiiiee ettt et et eee e e e e s 5
STMIPLE. ..ttt ettt e et e ettt e et e et e e sbt e e et e e sab e e e nabeee e s 6

ALK e bbbttt et h ettt h et et e et e 6
NON-AUhENTICAIONG......eeiiiiiiiiie ettt ettt e et eeireeeeeeeeeeneaes 6

LG 1T 1) 1 1 FEO SO U USRS UTRRRRPRRP 7
ISt ettt ettt e et e et e e e bbe e e bt e e e bt e e enbaeenabaeenanaee 7
OWLOCAL ...t ettt e et e et e et e e sttt aeeee e e e e nnnneeee 7

S et ettt et et a e et e et e e s e areeees 8

4. BXECULION.eeeiuiiieeitte et ee ettt e ettt e ettt e st e e st e e s atte e st ae e et eeenateeensseesnsteesnnbeesnsneaeeaeesesnnnnsssnee 8
Create NAMESPACE(S)..eeuvreerureeerireeeriteeenteeeiiteeeriteestteestteestteessseessaseesssseesssseesanseesssseessanns 8
IMPOTt SChEMA(S). ... veeeiiieeiie ettt ettt e st e st e st e e e e eeeaeaes 9
INStAll PrOVIAETS.eiiiiieeiiieeee ettt ettt e s e et ee e e e e e eaas 9
Automatic Provider RegiStration...........cueevriieeiiiieniieeniieeeiie et 9
Provider QUALITIET..........o.ooiiiiiiiiiieiiie et e e e e s 10
USING CIM CHENLS.....eeieiiiieiiieesiiie ettt et ettt e et e e st e e sateessbeeesabaeesnseeesaseeens 10

S CHENE APttt et et e sttt e e e e e e e e 11
OVEIVIBW ...ttt ettt ettt et e ettt e ettt e ettt e sttt e s bt e e e abeeeeabeeeabeesabeesnteesnsbeesannssnneeeeens 11
Building/Compiling/LinKing..........ccooeiiiiriiieniieeniieeiee et s 11

6. BUIlAINg ProVIders......cccuuiiiiiiiiiieiiieeie ettt et et ae e e e e 11
OVEIVIBW ..ttt ettt ettt et e ettt e ettt e ettt e sttt e s bt e e eabteesabeeenabeesnabeesnteesnsbeesannbsnaeeeeens 11
INSEANCE. c.ceee ettt e s e s et e e e 11
Secondary INSLANCE.eevuiiiiiieieiie ettt e et e e 12
AALSSOCTALOTeeeeitieeiiee ettt ettt e et e et e ettt e e bt e sbbeesabbeeeaateesabteesabeeesaseaeeeesananns 12
IMERO. ... ettt sttt e st e st e e eeanae s 12
INAICATION. ..ottt ettt ettt et e et eeibee e e e e enas 12
Provider Development ProCess.........ccuuiiiiiiiiiieiiiieiiieeeiieeeiteeete st 13
Extend SChemMa.........cooiiiiiii e 13

USE COUEGEN.......eeeuiiieeniiieeitie ettt ettt ettt e st e st e e st e e sabeeesabeeesabeeennseeeeens 13
Finish WIiting ProVIder...........coovviiiiiiiiiiieeiee ettt e s 13

1. OpenWBEM Overview & Concepts

Genesis

OpenWBEM was started at Caldera in early 2001. It was intended to become part of the
Volution Manager product. It was open sourced in the desire to help increase the
compatiblity of management products, especially for Linux. It is now maintained by a
variety of various companies and individuals. Dan Nuffer is the project lead.

Overview

OpenWBEM is a software suite that is a mature implementation of the DMTF CIM and
WBEM standards. Components include a CIM Object Manager (CIMOM), a CIM Client
API, a CIM Listener API, a WBEM Query Language (WQL) engine.

Features

See openwbem.org for a nice list.

2. Installation

Pre-Requisites

OpenWBEM is written in C++, and has been developed on gcc. It also can be
compiled by most current C++ compilers, include Microsoft Visual C++ 7.1, IBM's
VisualAge for C++, and HP's aC++

pthreads.
GNU make

One some OSs you may need GNU versions of standard Unix tools because the
vendor provided tools are buggy or have hard-coded limits like 2048 line lengths or
other such nonsense.

Optional Feature Pre-Requisites

flex — Only if you obtained the source from CVS, or if you need to modify the mof or
wql lexers.

bison — Only if you obtained the source from CVS, or if you need to modify the mof
or wql parsers.

perl with embedding headers and libraries — If you want to use the perl provider
interface.

PAM libraries — If you want to use the PAM authentication module. These are part of
glibc on Linux.

PAM development headers — If you want to build the PAM authentication module.

zlib — If you want to enable & use http compression.

slp (e.g. OpenSLP) — If you want to use the slp provider to advertise or the client api
to discover slp cimom advertisements.

openssl — If you want to use https. Highly recommended.

The Installation

First download and extract the OpenWBEM source code. Then run the configure script:
./ confi gur e There are quite a few options you can pass to the configure script that
are used to enable/disable certain optional features, or to tell it where to find headers and
libraries if they aren't in the standard locations. Use the --hel p flag to get a list of the
options. If you are building a copy to do development work, it is highly recommended
you use the —enabl e- debug- node option. After configure is finished, you can run
make to build. Verify that everything is working, and run make check. Run make

I nstal | toinstall OpenWBEM on your system. Having it installed is not required, but
will make it easier to use since the binaries and libraries will be in the PATH.

There is also an RPM spec file available. You can build the OpenWBEM RPMs by
executing: r pnbui | d -ta openwbem <version>.tar.gz. Orif you have
already extracted the tarball and run configure, run make r pm and the output will be
placed under the r prbui | d directory. This will generate an openwbem and openwbem-
devel rpm. You can then install them by running r pm -i <rpm fil enane>. The
RPM provides some additional files that aren't installed otherwise on Linux. These
include the init script (/ et ¢/ i ni t . d/ owci nond), the PAM configuration file

(/ et ¢/ pam d/ openwbemn), and some miscellaneous documentation.

3. Configuration

The OpenWBEM cimom (owcimomd) can be passed 3 different command line
arguments.

-h prints the help.

-d tells owcimomd to run in debug mode. This causes it to not fork into the
background and detach from the terminal (daemonizing). It will also print all log
messages to the console in addition to whatever logger is configured.

-c <config filename> specifies which config file to use. By default owcimomd will
use the config file in ${ sysconf di r } / openwbent openwbem conf .
${sysconfdir} defaultsto/ usr/| ocal / et c, but can be changed by telling the
configure script to use a different prefix or sysconfdir (e.g. - - sysconfdir=/ et c).
This option allows the user to override the default and manually specify the config file
to use.

The owcimomd config file contains many options which can be used to modify it's
behavior. Most are set to reasonable defaults. You probably won't need to change any of
the options that refer to directories. Some you may wish to configure are those related to
authorization, logging, or optional features. The config file contains explanations for all

available options. The OpenWBEM philosophy is that all configuration is stored in one
centralized location: the config file. This is why there are only 3 command line options,
and no environment variables affect the behavior of owcimomd.

Configuring authentication

Currently there are 3 supported HTTP authentication methods. Basic, Digest and
OWLocal.

If Basic is used, then you may choose to use an authentication module. Available
modules include: PAM, PAM command line, Simple, AIX authenticator, and non
authenticating. OpenWBEM also supports custom authentication modules.

The owci nond. al | owed_user s config item is the simplest form of access control,
and is applied after the authentication module has authenticated a user. It is a space
delimited list of the users who are allowed to access the cimom. To allow all users, use * .

PAM

This method uses the PAM (Pluggable Authentication Modules) system api. This means
that the cimom will use the system's authentication. The client will have to use the same
username and password they would use to log in to the system. To use this:

- Set the owci nond. aut henti cati on_nodul e config item to point to the
| i bpamaut henti cati on. so library file.

- The pam al | owed_user s config item to a space delimited list of the users who
are allowed to access the cimom. To allow all users, put in * . This option is
deprecated in favor of the more general owci nond. al | owed_user s option.

+ On Linux, install the openwbem PAM config file. Copy et ¢/ pam d/ openwbemto
/ et c/ pam d/

To build the PAM authentication module, you must have the PAM development headers
installed. They are not installed by default in many versions of Linux. If you find that
the | i bparmaut hent i cat i on. so file was not built, this is because the OpenWBEM
configure script will automatically detect if the PAM headers are there or not, and only
build the PAM authentication module if they are installed. If you find this happened to
you, and you want to remedy the situation, install the headers (commonly in an RPM
called pam-devel), then remove the conf i g. cache file generated by the configure
script, and then re-run configure and rebuild.

When using PAM, the HTTP Basic authentication scheme is used, meaning the password
is sent in an insecure fashion over the wire. To prevent sniffers on the Internet from
obtaining your credentials you must use SSL together with the PAM authentication
module. This may not be a concern in a trusted environment.

PAM Command Line

This method is the same as PAM. The difference is that an external binary
(OW_PAMAuth) is called to perform the authentication. The reasons to use this instead

of PAM is if the system's pam APIs are not thread safe or leak memory. Some older
versions of Linux (from 2001 and earlier) are known to leak memory. To use this:

- Set the owci nond. aut henti cat i on_nodul e config item to point to the
| i bpamaut hent i cati oncl . so library file.

 The other considerations for PAM also apply.

Simple

The simple authentication module is backed by a file where each line contains a user
name and password separated by a colon.

An example file is like this:

user nanel: passwor dl
user nanme2: passwor d2

To use this:

- Set the owci nond. aut henti cat i on_nodul e config item to point to the
I'i bsi npl eaut henti cati on. so library file.

« Setthe si npl e_aut h. passwor d_fi | e config item to point to the password file
you have created.

When using the simple authentication method, the HTTP Basic authentication scheme is
used, meaning the password is sent in an insecure fashion over the wire. To prevent
sniffers on the Internet from obtaining your credentials you must use SSL together with
the simple authentication module. This may not be a concern in a trusted environment.

AIX

The AIX authentication module uses the AIX authenticate(), which is a precursor to
PAM. The system's user database will be used. Newer versions of AIX have PAM by
default, so you may want to use PAM if possible.

To use this:

- Set the owci nond. aut henti cat i on_nodul e config item to point to the
| i bai xaut henti cati on. so library file.

When using the AIX authentication method, the HTTP Basic authentication scheme is
used, meaning the password is sent in an insecure fashion over the wire. To prevent
sniffers on the Internet from obtaining your credentials you must use SSL together with
the simple authentication module. This may not be a concern in a trusted environment.

Non-Authenticationg

The non-authenticating module authenticates all users. You may wonder what benefit it

has over just setting owci nond. al | ow_anonynous=t r ue? The difference is that
the client is required to provide credentials, and the username and password are stored in
the Oper at i onCont ext . This isn't very secure, but if you want to allow anybody to
authenticate, but actually need the principal and credential for logging purposes, this may
suit your purpose.

To use this:

- Set the owci nond. aut henti cat i on_nodul e config item to point to the
| i bnonaut hent i cati ngaut henti cati on.so library file.

When using the non-authenticating authentication method, the HTTP Basic
authentication scheme is used, meaning the password is sent in an insecure fashion over
the wire. To prevent sniffers on the Internet from obtaining your credentials you must
use SSL together with the simple authentication module. This may not be a concern in a
trusted environment.

Custom

Create a class that implements the AuthenticatorIFC interface and compile it into a
shared library. Point the config file at it and you're done.

When using a custom authentication method, the HTTP Basic authentication scheme is
used, meaning the password is sent in an insecure fashion over the wire. To prevent

sniffers on the Internet from obtaining your credentials you must use SSL together with
the simple authentication module. This may not be a concern in a trusted environment.

Digest

The digest authentication mechanism is built into the http server, and bypasses the
pluggable owcimomd authentication module. To turn on digest authentication, set the
htt p_server. use_di gest config item to true. Digest uses cryptographic hashing
and other mechanisms to prevent discovery of passwords. Because of this, it cannot
integrate with system passwords. The digest authentication module requires you create a
password file using the owdi gest genpass utility. Here is an example of how to use
it:

owdi gest genpass -1 userl -f /the/password/file

Enter the password when prompted. If you aren't running it on the same computer as the
cimom, you can also use the -h flag to specify the cimom computer's hostname. To
inform owcimomd of the digest password file, set the

htt p_server. di gest _password_fil e config item.

Digest authentication protects the password over an unencrypted (non-SSL) connection.
Attackers will be unable to obtain the password. Digest also prevents attackers from
doing a replay attack. However, the data stream will not be encrypted.

OWLocal

This is an HTTP authentication mechanism that is designed to be used by a client and

server which are on the same system. The mechanism is specified in
doc/local_authentication.txt. This allows clients to authenticate without providing a
password, and owcimomd trusts the hosting operating system has properly authenticated
the user.

To use this:

Set the config item ht t p_server. al | ow_| ocal _authentication =
true

SSL

OpenWBEM will build in SSL client and server support if the configure scripts finds the
openssl development headers and libraries. The htt p_server. https_port config
item specifies which port the https server will listen on. If set to -1, https will be
disabled. If not specified, the default is port 5989 which is the IANA assigned port for
CIM-XML over https.

To use SSL you need to setup a SSL host key and certificate. If you are just testing, or
doing development, you can use the test file the comes with OpenWBEM:
test/acceptance/testfil es/ hostkey+cert. pem

Otherwise you can generate your own using a SSL key and certificate tool such as
openssl, or even get one signed by a your local CA or a recognized CA (e.g. Verisign).
The file has to contain both the server key and certificate in pem format.

You may want to use the provided owgencer t script to create a self signed certificate
and key.

Make sure the configitem htt p_server. SSL_cert points to the file.

4. Execution

During development I almost always run owcimomd in debug mode (use the -d command
line argument). In production, it should be run as a normal system daemon. There is a
Linux init script available (et ¢/ i ni t / owci nond) which works on most Linux
distributions. The init script assumes openwbem has been . / conf i gur e'd with the

following arguments: - - pr ef i x=/usr --sysconfdir=/etc --
| ocal statedir=/var/lib

Create Namespace(s)

owcimomd always has a namespace named r 0ot . OpenWBEM supports a hierarchical
view of namespaces, using the ___Nanmespace class. The DMTF has deprecated
__Nanespace in lieu of Cl M_Nanespace. OpenWBEM supports

Cl M_Nanespace if the class has been created, and it provides a flat view of
namespaces. Enumerating instances of the class will return an instance for each
namespace in the cimom. The CIM Operations over HTTP spec recommends that

Cl M_Nanespace always be available in the r o0t namespace. It is common practice
to use r oot / ci mv2 as the namespace to hold version 2 of the CIM schema. You can
create namespaces using any CIM client such as the SNIA browser. OpenWBEM
provides a utility named owcr eat enanespace which can create a namespace. Here
is an example of how to create the r 00t / ci mv2 namespace on the cimom running on
the same machine:

owcr eat enanespace -u http://local host/ -n root/cinv2

Import Schema(s)

You use oWnDf ¢ to import mof classes and instances into the cimom.

It is recommended that the CIM_Interop schema be present in the r 00t namespace. Run
the following commands to accomplish this:

owrofc -u http://1ocal host/cinmom-n root ClM Core28. nof
ownofc -u http://1ocal host/cinom-n root C M Event 28. nof

owrofc -u http://1ocal host/ci mom-n root
Physi cal 28_Package. nof

owrofc -u http://1ocal host/ci nom-n root
Syst en28_Syst entl enent s. nof

owrof ¢ -u http://1ocal host/cinmom-n root ClM.Interop28. nof

owrof ¢ -u http://1ocal host/ci nom-n root
OpenVBEM | nt er op. nof

As of this writing the current version of the schema is 2.8. Substitute the version of the
schema that you wish to use in the above commands.

For all versions of OpenWBEM:

You will have to import the schema into the namespace you wish to use (r oot / ci mv2
is recommended):

owrofc -u http://1ocal host/cimom-n root/cinv2

Cl M_Schema28. nof

Substitute the actual schema file you are using. OpenWBEM 3.1.x comes with the CIM
2.8 schema in the schemas/cim28 directory. Other versions can be downloaded from the
DMTF at http://dmtf.org/standards/standard_cim.php.

If you wish to use ACLs, create the r oot / secur i t y namespace and import
OpenVBEM Acl 1. 0. nof . Refer to the ACL.HOWTO file if you want more
information about ACLs.

Install Providers

Automatic Provider Registration

When OpenWBEM starts up, it will scan and load all provider interfaces. Each provider
interface is given the opportunity to automatically register any class/provider combos that
its responsible for with the provider manager. Thus this behavior is dependent on the
provider interface. The C++ provider interface will scan all providers at start-up. It is
currently not possible to dynamically register a provider that uses this registration
scheme. The cimom has to be restarted when one is added or removed. It is not
necessary to create any special classes or instances to inform the cimom of the provider,
since it will be found when the cimom starts up.

Provider Qualifier

owcimomd has support for the provider qualifier and will continue to support the
provider qualifier as long as people still use it.

To use the provider qualifier, you should first find the class in the CIM schema that most
closely resembles what you want to model. Then you create a subclass for your object.
You attach a provider qualifier to the class that identifies your provider. For instance:

[provider(“c++::acnme_foo")]

cl ass ACVE Foo : Cl M Foo

{

b

tells the cimom to look for | i bacme_f 00. so when it needs to query the provider for
the ACVE_Fo00 class. The value of the qualifier “ c++: : acnme_f 00” identifies both
the provider type and the provider library name. C++ is the type, and acne_f 00 is the
name. Other provider interfaces have a different type. To install the provider, simply
copy the provider library to the appropriate directory. The config item

cppprovifc. prov_| ocat i on specifies the directory. It defaults to /

usr/ |l ocal /11 b/ openwbeni c++provi der s. Then import your mof into the
cimom and your provider will be available. It is not necessary to restart the cimom.

Using CIM Clients

OpenWBEM currently has utilities to:

+ compile mof (owmofc)

- generate a http digest password file (owdigestgenpass)
+ listen for indications (owcimindicationlistener)

- create a namespace (owcreatenamespace)

+ delete a namespace (owdeletenamespace)

« enumerate classes (owenumclasses)

enumerate class names (owenumclassnames)
enumerate namespaces (owenumnamespace)
enumerate qualifiers (enumqualifiers)
execute wql queries (owexecwql)

owmofc and owdigestgenpass have man pages. For usage information on any command,
use the --help option.

5. Client API

Overview

OpenWBEM has all the necessary code to facilitate writing a CIM client. All the details
of CIM/XML are abstracted. There are also utilities for sockets, threading, etc. See the
Doxygen generated API docs if you need more information.

Building/Compiling/Linking

The client API is broken up into various shared libraries to allow developers to be able to
pick and choose what subset of functionality they need.

libopenwbem.so — Common code as well as all CIM meta model classes.
libowclient.so — CIM client functionality.

libowxml.so — XML functionality used by the CIM/XML protocol code.
libowhttpcommon.so — HTTP functionality that is common between client and server.
libowhttpclient.so — HTTP client code.

libowhttpxmllistener.so — The CIM/XML Listener.

libowservicehttp.so — The HTTP server. Used by the CIM/XML Listener.

6. Building Providers
Overview

Instance

Instance providers are responsible for handling the following intrinsic methods for a
certain class:

EnumeratelnstanceNames

EnumerateInstances - The default implementation calls enumInstanceNames() and
then getlnstance() for each name.

Getlnstance

Createlnstance

« ModifyInstance
« Deletelnstance

Typically, each instance (uniquely identified by it's keys) represents one object to be
managed.

If your provider is read-only, you can derive from CppReadOnlyInstanceProvider and
you don't need to implement create, modify or delete. Also you can derive from
CppSimplelnstanceProvider and implement doSimpleEnumInstances(). enumInstances(),
getInstance() and enumInstanceNames() are all implemented by the base class.

Secondary Instance

Secondary Instance providers aren't responsible to exposing instances like instance
providers are, but they are given the opportunity to filter instances returned by
enumlnstances() or getlnstance(). They also get notified on createlnstance(),
modifylInstance() and deletelnstance().

Associator

Associator providers are responsible for handling the following intrinsic methods for a
certain association class:

+ Associators
+ AssociatorNames
+ References
+ ReferenceNames

With OpenWBEM, an dynamic association can be implemented with just an instance
provider, but it can be much more efficient to implement the associator provider
interface. Associator providers should also be instance providers so that the instance
functions will work for the association class.

For a simpler (albeit less powerful) provider, you can derive from
CppSimpleAssociatorProvider, which only requires the provider to implement one
function, and the other 4 standard functions are implemented by the base class.

Method

Method providers are responsible for handling any extrinsic methods defined in a class.
It is common for an instance provider to also be a method provider.

Indication

Indication providers are responsible for generating indications. There are two categories
of indications, Life-cycle and alert. See the DMTF indication whitepaper for more info.
Life-cycle indications are tied to a specific class, and so will usually be implemented as
an instance/indication provider. OpenWBEM supports three models of implementing

indication providers:

- Instance Life-cycle: polled by the cimom — This is the easiest to implement, but also is
more cpu and memory intensive than the other alternatives. The cimom keeps a
cached copy of all the instances of the class and every polling cycle will get the
current set. The differences in the sets between the cycles drive the generation of
indications.

- Separate thread — This is good for the case when a separate thread can block on an
external event (such as a socket or kernel semaphore, etc.) and raise an indication
whenever something happens.

« Polled provider — This is good for the case where the provider has to poll for data (e.g.
Check the free disk space every 30 seconds)

See the indication provider examples for more detail on these 3 approaches.
Provider Development Process

Extend Schema

The first step is to find the appropriate class in the standard CIM schema that represents
the element you want to model. Next you create a subclass for your object. You can add
properties and methods that apply. Creating a subclass is done with mof (or you can use
the new rose plug-in available from the sblim project and generate the mof). The class
may be dependent on others via associations, so you may have multiple iterations of
classes that need to be instrumented. If you implement non-association classes, you also
usually need to implement associations for them as well.

Use CodeGen

Decide how much functionality your provider will need. Is a read-only instance provider
good enough? If you have methods you need to implement, you will need to be an
instance/method provider. If your class needs to be monitored for changes, you need to
implement the indication provider provider interface to send indications. Once you know
what provider interfaces you'll need to implement, you can select the appropriate
CodeGen template, and then generate stubs for your provider. See the CodeGen
README for more information on how to use it. Unfortunately, as of this writing, the
templates for CodeGen are out of date and incomplete. If you write some, please consider
contributing it for others to use.

Finish writing provider

Now you get to do the real work, interface with whatever you're modeling and convert it
into CIM objects. Link your provider into a shared library and you're set.

